Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$\operatorname{Bis}\left(O-n\right.$-butyl dithiocarbonato- $\kappa^{2} S, S^{\prime}$)-bis(pyridine- κN)manganese(II)

Naveed Alam, ${ }^{\text {a }}$ Muhammad Ali Ehsan, ${ }^{\text {b }}$ Matthias Zeller, ${ }^{\text {c }}$ Muhammad Mazhar ${ }^{\text {b }}$ and Zainudin Arifin ${ }^{\text {b* }}$
${ }^{\text {a }}$ Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ${ }^{\text {c }}$ Department of Chemistry, Youngstown State University, 1 University Plaza, Youngstown, Ohio 44555, USA
Correspondence e-mail: zainudin@um.edu.my
Received 19 May 2011; accepted 4 July 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; disorder in main residue; R factor $=0.025 ; w R$ factor $=0.064$; data-to-parameter ratio $=19.0$.

The structure of the title manganese complex, $\left[\mathrm{Mn}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OS}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$ or $\left[\mathrm{Mn}\left(\mathrm{S}_{2} \mathrm{CO}-n-\mathrm{Bu}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$, consists of discrete monomeric entities with Mn^{2+} ions located on centres of inversion. The metal atom is coordinated by a six-coordinate trans $-\mathrm{N}_{2} \mathrm{~S}_{4}$ donor set with the pyridyl N atoms located in the apical positions. The observed slight deviations from octahedral geometry are caused by the bite angle of the bidentate $\kappa^{2}-\mathrm{S}_{2} \mathrm{CO}-n-B u$ ligands $\left[69.48(1)^{\circ}\right]$. The $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{CH}_{3}\right)$ chains of the O - n-butyl dithiocarbonate units are disordered over two sets of sites with an occupancy ratio of 0.589 (2):0.411 (2).

Related literature

For general background to the title complex, see: Alam et al. (2008); Tahir et al. (2010); Klevtsova \& Glinskaya (1997); Câmpian et al. (2010); Kirichenko et al. (1994).

Experimental

Crystal data
$\left[\mathrm{Mn}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OS}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$
$M_{r}=511.66$
Monoclinic, $P 2_{1} / c$
$a=10.9189$ (17) \AA
$b=6.0853$ (9) A
$c=17.650$ (3) \AA
$\beta=97.536(3)^{\circ}$

Data collection

Bruker SMART APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2003)
$T_{\text {min }}=0.630, T_{\text {max }}=0.782$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.064$
$S=1.12$
2871 reflections
151 parameters
$V=1162.6(3) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=0.95 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.50 \times 0.37 \times 0.26 \mathrm{~mm}$

11354 measured reflections 2871 independent reflections 2797 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.028$

1 restraint
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.34 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.50 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 2002); cell refinement: SAINTPlus (Bruker, 2002); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010).

We are thankful to HIR project No. UM•C/625/1/HIR/035 and UMRG project No. RG097-10AET for funding. The X-ray diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491 and Youngstown State University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2277).

References

Alam, N., Hill, M. S., Kociok-Köhn, G., Zeller, M., Mazhar, M. \& Molloy, K. C. (2008). Chem. Mater. 20, 6157-6162.

Bruker (2002). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Câmpian, M. V., Haiduc, I. \& Tiekink, E. R. T. (2010). J. Chem. Crystallogr. 40, 1029-1034.
Kirichenko, V. N., Glinskaya, L. A., Klevtsova, R. F., Leonova, T. G. \& Larionov, S. V. (1994). J. Struct. Chem. 35, 242-247.
Klevtsova, R. F. \& Glinskaya, L. A. (1997). Zh. Strukt. Khim. 38, 960-966. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tahir, A. A., Ehsan, M. A., Mazhar, M., Upul Wijayantha, K. G., Zeller, M. \& Hunter, A. D. (2010). Chem. Mater. 22, 5084-5092.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

$\operatorname{Bis}\left(O\right.$-n-butyl dithiocarbonato- $\left.\kappa^{\mathbf{2}} \boldsymbol{S}, S^{\prime}\right)$ bis(pyridine- $\kappa \boldsymbol{N}$) manganese(II)

N. Alam, M. A. Ehsan, M. Zeller, M. Mazhar and Z. Arifin

Comment

As a part of our ongoing studies on the development of single source precursors for the fabrication of pure manganese sulfide thin films through aerosol-assisted chemical vapour deposition (AACVD) (Alam et al., 2008; Tahir et al., 2010) the monomeric title complex $\left[\mathrm{Mn}\left(\mathrm{S}_{2} \mathrm{CO}-n-\mathrm{Bu}\right)_{2} \cdot\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$ was synthesized and its crystal structure, one of just four manganese dithiocarbonates (Klevtsova \& Glinskaya, 1997; Câmpian et al., 2010; Kirichenko et al., 1994), is reported here.

The structure of the manganese compound consists of centrosymmetric monomeric entities. Fig. 1 shows a perspective view of the monomeric unit with the atomic numbering scheme. The Mn (II) atom is in a distorted octahedral environment surrounded by two chelating xanthate ligands and two pyridines ligands. All managanese dithiocarbonato compounds structurally described so far are also octahedral complexes with an $\mathrm{N}_{2} \mathrm{~S}_{4}$ donor set (Klevtsova \& Glinskaya, 1997; Câmpian et al., 2010; Kirichenko et al., 1994), but the other four such compounds are all bipyridine derivative complexes and the title compound is the only one in which the two none-sulfur donor atoms occupy the apical sites. The four sulfur atoms and the manganese atom are almost coplanar. The bond angles around the manganese atom are in the range of $69.48(1)^{\circ}$ to 180°. The Mn—S bond lengths involving the xanthate ligands range are 2.5862 (4) and $2.6556(5) \AA$ and are in good agreement with those reported for other analogous Mn-dithiocarbonato complexes. The variation of the $\mathrm{Mn}-\mathrm{S}$ bond distances in the complex of $c a 0.07 \AA \AA$ is not very pronounced and the bidentate $\kappa^{2}-\mathrm{S}_{2} \mathrm{CO}-n-B u$ ligands may thus be considered to be chelating in a symmetric (isobidentate) mode. The resulting $\mathrm{N}_{2} \mathrm{~S}_{4}$ donor set defines an approximately octahedral geometry with distortions arising from the steric constraints imposed by the restricted bite distances of the chelating xanthate ligands. The two S atoms forming the longer $\mathrm{Mn} — \mathrm{~S}$ bonds are approximately trans to each other. The short value of 1.333 (8) \AA for the C6-O1 bond lengths is consistent with a significant contribution of the resonance form of the xanthate anion that features a formal $\mathrm{C}=\mathrm{O}$ bond and negative charges on each of the S atoms. The two pyridine rings are coplanar and almost perfectly perpendicular to the $\mathrm{O} 1 / \mathrm{S} 1 / \mathrm{S} 2 / \mathrm{O} 1^{\mathrm{i}} / \mathrm{S} 1^{\mathrm{i}} / \mathrm{S} 2^{\mathrm{i}}$ plane. Symmetry code: (i) $-x+1,-y+1,-z+2$.

Packing of the title compound is facilitated mostly by shape recognition through van der Waals forces. A small number of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (originating from the alkyl and aromatic $\mathrm{C}-\mathrm{H}$ groups) can be observed (Fig. 2), and close contacts are present between sulfur atoms of neighboring complexes. These close contacts weakly connect the MnS_{4} units of the complexes along the direction of the b-axis to form infinite $\left(\mathrm{MnS}_{4}\right)_{\mathrm{n}}$ chains as shown in Fig. 2.

Experimental

Sodium hydroxide ($3.99 \mathrm{~g}, 0.1 \mathrm{~mol}$) was dissolved in $250 \mathrm{ml} n$-butanol placed in a 500 ml oven dried round bottom flask fitted with reflux condenser, magnetic stirrer and vaccum line. Carbon disulfide ($7.6 \mathrm{ml}, 0.1 \mathrm{~mol}$) was added dropwise to the saturated solution of sodium hydroxide over a period of 90 minutes. After stirring for one hour a clear yellow solution was formed. $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(11.64 \mathrm{~g}, 0.05$ mole) was added directly into the reaction flask. The contents were stirred to dissolve the salt completely. About 30 ml of pyridine were added to give a light yellow solution and stirring was continued

supplementary materials

for another hour. Any insoluble matter was removed by filtration and slow evaporation of the reaction mixture at room temperature yielded 70% of the title compound in the form of yellow crystals. M.p. $=368 \mathrm{~K}$. Elemental analyses: Found (Calc.) for: C 46.02 (46.99); H 5.33 (5.51); N 4.58 (5.47).

Refinement

Reflections 100 and 002 were partially obstructed by the beam stop and were omitted from the refinement. The $\mathrm{O}\left(\mathrm{CH}_{2}\right)_{3}\left(\mathrm{CH}_{3}\right)$ chain of the O-n-butyldithiocarbonato group is disordered over two positions with an occupancy ratio of 0.589 (2) to 0.411 (2). The $\mathrm{C}-\mathrm{O}$ bond distance was restrained to be the same within a standard deviation of 0.02 , and the ADPs of equivalent atoms were set to be identical. Hydrogen atoms were placed in calculated positions with $\mathrm{C} — \mathrm{H}$ distances of $0.95,0.99$ and $0.99 \AA$ for aromatic, methyl and methylene H atoms, respectively, and were refined with an isotropic displacement parameter $U_{\text {iso }}$ of 1.5 (methyl) or 1.2 times (aromatic) that of $U_{\text {eq }}$ of the adjacent carbon atom. Methyl H atoms were allowed to rotate around the $\mathrm{C}-\mathrm{C}$ bond axis at a fixed angle to best fit with the experimental electron density.

Figures

Fig. 1. Perspective view of the monomeric unit with the atomic numbering scheme. Displacement ellipsoids are drawn at with 50% probability level. The minor disordered alkyl chain is shown for one half of the molecule. Hydrogen atom lables, labels of less than 50% occupied atoms and of symmetry created atoms are omitted for clarity.

Bis(O-n-butyl dithiocarbonato- ${ }^{2} \mathbf{}^{\mathbf{S}}, \mathbf{S}^{\prime}$)bis(pyridine-к N) manganese(II)

Crystal data	
$\left[\mathrm{Mn}\left(\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OS}_{2}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]$	$F(000)=534$
$M_{r}=511.66$	$D_{\mathrm{x}}=1.462 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / c$	Melting point: 368 K
Hall symbol: -P 2 ybc	Mo Ka radiation, $\lambda=0.71073 \AA$
$a=10.9189(17) \AA$	Cell parameters from 6031 reflections
$b=6.0853(9) \AA$	$\theta=2.8-30.7^{\circ}$
$c=17.650(3) \AA$	$\mu=0.95 \mathrm{~mm}^{-1}$
$\beta=97.536(3)^{\circ}$	$T=100 \mathrm{~K}$
$V=1162.6(3) \AA^{3}$	Block, yellow
$Z=2$	$0.50 \times 0.37 \times 0.26 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: fine-focus sealed tube
graphite
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
$T_{\text {min }}=0.630, T_{\text {max }}=0.782$
11354 measured reflections

$$
\begin{aligned}
& 2871 \text { independent reflections } \\
& 2797 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.028 \\
& \theta_{\max }=28.3^{\circ}, \theta_{\min }=2.8^{\circ} \\
& h=-14 \rightarrow 14 \\
& k=-8 \rightarrow 8 \\
& l=-23 \rightarrow 23
\end{aligned}
$$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.064$
$S=1.12$
2871 reflections
151 parameters
1 restraint

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$	Occ. (<1)
C1	$0.57264(12)$	$0.6534(2)$	$1.17119(7)$	$0.0219(3)$	
H1A	0.5302	0.7817	1.1516	0.026^{*}	
C2	$0.61621(13)$	$0.6439(2)$	$1.24896(7)$	$0.0261(3)$	
H2A	0.6034	0.7634	1.2817	0.031^{*}	
C3	$0.67842(14)$	$0.4574(3)$	$1.27770(7)$	$0.0282(3)$	
H3A	0.7083	0.4460	1.3306	0.034^{*}	

C4	0.69638 (13)	0.2874 (2)	1.22795 (8)	0.0271 (3)	
H4A	0.7397	0.1585	1.2462	0.033*	
C5	0.65016 (12)	0.3084 (2)	1.15104 (7)	0.0224 (3)	
H5A	0.6627	0.1916	1.1172	0.027*	
C6	0.72640 (11)	0.6918 (2)	0.95170 (6)	0.0183 (2)	
O1	0.8259 (9)	0.7831 (13)	0.9285 (10)	0.0169 (10)	0.589 (2)
C7	0.9256 (16)	0.674 (3)	0.9020 (10)	0.0235 (7)	0.589 (2)
H7A	0.8944	0.5470	0.8700	0.028*	0.589 (2)
H7B	0.9824	0.6178	0.9460	0.028*	0.589 (2)
C8	0.9949 (2)	0.8301 (4)	0.85523 (13)	0.0212 (3)	0.589 (2)
H8A	1.0637	0.7495	0.8364	0.025*	0.589 (2)
H8B	0.9383	0.8804	0.8101	0.025*	0.589 (2)
C9	1.0467 (2)	1.0298 (4)	0.90058 (13)	0.0232 (4)	0.589 (2)
H9A	0.9792	1.1045	0.9228	0.028*	0.589 (2)
H9B	1.1088	0.9809	0.9432	0.028*	0.589 (2)
C10	1.1062 (15)	1.191 (2)	0.8511 (9)	0.0263 (14)	0.589 (2)
H10A	1.1392	1.3158	0.8823	0.039*	0.589 (2)
H10B	1.0444	1.2426	0.8097	0.039*	0.589 (2)
H10C	1.1736	1.1174	0.8294	0.039*	0.589 (2)
O1B	0.8163 (14)	0.819 (2)	0.9292 (15)	0.0169 (10)	0.411 (2)
C7B	0.920 (2)	0.683 (4)	0.9022 (14)	0.0235 (7)	0.411 (2)
H7BA	0.9431	0.5589	0.9372	0.028*	0.411 (2)
H7BB	0.8949	0.6257	0.8500	0.028*	0.411 (2)
C8B	1.0250 (3)	0.8474 (5)	0.90349 (19)	0.0212 (3)	0.411 (2)
H8BA	1.0947	0.7751	0.8827	0.025*	0.411 (2)
H8BB	1.0537	0.8874	0.9573	0.025*	0.411 (2)
C9B	0.9920 (3)	1.0572 (6)	0.85830 (19)	0.0232 (4)	0.411 (2)
H9BA	0.9239	1.1321	0.8798	0.028*	0.411 (2)
H9BB	0.9617	1.0177	0.8047	0.028*	0.411 (2)
C10B	1.102 (2)	1.219 (3)	0.8590 (13)	0.0263 (14)	0.411 (2)
H10D	1.0730	1.3545	0.8324	0.039*	0.411 (2)
H10E	1.1663	1.1515	0.8331	0.039*	0.411 (2)
H10F	1.1351	1.2532	0.9119	0.039*	0.411 (2)
Mn1	0.5000	0.5000	1.0000	0.01767 (8)	
N1	0.58831 (10)	0.48802 (18)	1.12286 (6)	0.0197 (2)	
S1	0.61548 (3)	0.86094 (5)	0.978244 (17)	0.01905 (8)	
S2	0.71689 (3)	0.41428 (5)	0.953823 (19)	0.02316 (9)	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0267(6)$	$0.0216(6)$	$0.0180(6)$	$-0.0082(5)$	$0.0053(5)$	$-0.0013(5)$
C2	$0.0331(7)$	$0.0287(7)$	$0.0171(6)$	$-0.0124(6)$	$0.0062(5)$	$-0.0053(5)$
C3	$0.0327(7)$	$0.0350(7)$	$0.0159(6)$	$-0.0152(6)$	$-0.0006(5)$	$0.0009(5)$
C4	$0.0289(7)$	$0.0272(7)$	$0.0236(6)$	$-0.0073(6)$	$-0.0031(5)$	$0.0034(5)$
C5	$0.0248(6)$	$0.0224(6)$	$0.0200(6)$	$-0.0068(5)$	$0.0025(5)$	$-0.0012(5)$
C6	$0.0209(6)$	$0.0196(6)$	$0.0137(5)$	$-0.0060(5)$	$-0.0001(4)$	$0.0020(4)$
O1	$0.0140(14)$	$0.005(3)$	$0.0317(5)$	$0.0019(17)$	$0.0048(12)$	$0.006(2)$

sup-4

C7	$0.0200(14)$	$0.0205(13)$	$0.0304(7)$	$-0.0033(11)$	$0.0055(8)$	$0.0032(8)$
C8	$0.0172(8)$	$0.0231(8)$	$0.0237(8)$	$-0.0035(7)$	$0.0040(7)$	$0.0021(8)$
C9	$0.0226(9)$	$0.0233(8)$	$0.0232(9)$	$-0.0059(7)$	$0.0008(6)$	$0.0035(7)$
C10	$0.0269(13)$	$0.022(3)$	$0.031(3)$	$-0.007(2)$	$0.0053(16)$	$0.003(2)$
O1B	$0.0140(14)$	$0.005(3)$	$0.0317(5)$	$0.0019(17)$	$0.0048(12)$	$0.006(2)$
C7B	$0.0200(14)$	$0.0205(13)$	$0.0304(7)$	$-0.0033(11)$	$0.0055(8)$	$0.0032(8)$
C8B	$0.0172(8)$	$0.0231(8)$	$0.0237(8)$	$-0.0035(7)$	$0.0040(7)$	$0.0021(8)$
C9B	$0.0226(9)$	$0.0233(8)$	$0.0232(9)$	$-0.0059(7)$	$0.0008(6)$	$0.0035(7)$
C10B	$0.0269(13)$	$0.022(3)$	$0.031(3)$	$-0.007(2)$	$0.0053(16)$	$0.003(2)$
Mn1	$0.02238(14)$	$0.01829(14)$	$0.01273(12)$	$-0.00792(10)$	$0.00374(9)$	$-0.00022(9)$
N1	$0.0229(5)$	$0.0207(5)$	$0.0157(5)$	$-0.0079(4)$	$0.0037(4)$	$-0.0008(4)$
S1	$0.02207(16)$	$0.01559(14)$	$0.01983(15)$	$-0.00504(11)$	$0.00407(11)$	$0.00058(11)$
S2	$0.02738(17)$	$0.01555(15)$	$0.02887(17)$	$-0.00708(12)$	$0.01235(13)$	$-0.00299(12)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

C1-N1	1.3447 (17)
C1-C2	1.3937 (17)
C1-H1A	0.9500
C2-C3	1.384 (2)
C2-H2A	0.9500
C3-C4	1.387 (2)
C3-H3A	0.9500
C4-C5	1.3906 (18)
C4-H4A	0.9500
C5-N1	1.3454 (18)
C5-H5A	0.9500
C6-O1	1.332 (8)
C6-O1B	1.349 (11)
C6-S2	1.6925 (13)
C6-S1	1.7014 (13)
O1-C7	1.41 (2)
C7-C8	1.524 (16)
C7-H7A	0.9900
C7-H7B	0.9900
C8-C9	1.523 (3)
C8-H8A	0.9900
C8-H8B	0.9900
C9-C10	1.513 (16)
C9-H9A	0.9900
N1-C1-C2	122.57 (13)
N1-C1-H1A	118.7
C2-C1-H1A	118.7
C3-C2-C1	118.86 (13)
C3-C2-H2A	120.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	120.6
C2-C3-C4	118.85 (12)
C2-C3-H3A	120.6

C9-H9B	0.9900
C10-H10A	0.9800
C10-H10B	0.9800
C10-H10C	0.9800
O1B-C7B	1.52 (3)
C7B-C8B	1.52 (2)
C7B-H7BA	0.9900
C7B-H7BB	0.9900
C8B-C9B	1.523 (5)
C8B-H8BA	0.9900
C8B-H8BB	0.9900
C9B-C10B	1.55 (2)
C9B-H9BA	0.9900
C9B-H9BB	0.9900
C10B-H10D	0.9800
C10B-H10E	0.9800
C10B-H10F	0.9800
$\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}$	2.2558 (11)
Mn 1 - N 1	2.2558 (11)
Mn1-S1	2.5863 (4)
$\mathrm{Mn} 1-\mathrm{S} 1^{\mathrm{i}}$	2.5863 (4)
Mn1-S2	2.6554 (5)
$\mathrm{Mn} 1-\mathrm{S} 2{ }^{\mathrm{i}}$	2.6554 (5)
O1B-C7B-H7BA	111.1
C8B-C7B-H7BB	111.1
O1B-C7B-H7BB	111.1
H7BA-C7B-H7BB	109.1
C7B-C8B-C9B	114.6 (9)
C7B-C8B-H8BA	108.6
C9B-C8B-H8BA	108.6
C7B-C8B-H8BB	108.6

C4-C3-H3A	120.6
C3-C4-C5	119.09 (14)
C3-C4-H4A	120.5
C5-C4-H4A	120.5
N1-C5-C4	122.39 (13)
N1-C5-H5A	118.8
C4-C5-H5A	118.8
O1-C6-S2	118.6 (4)
O1B-C6-S2	128.8 (6)
O1-C6-S1	118.1 (4)
O1B-C6-S1	107.9 (6)
S2-C6-S1	123.34 (7)
C6-O1-C7	127.1 (9)
O1-C7-C8	110.3 (11)
O1-C7-H7A	109.6
C8-C7-H7A	109.6
O1-C7-H7B	109.6
C8-C7-H7B	109.6
H7A-C7-H7B	108.1
C9-C8-C7	112.9 (7)
C9-C8-H8A	109.0
C7-C8-H8A	109.0
C9-C8-H8B	109.0
C7-C8-H8B	109.0
H8A-C8-H8B	107.8
C10-C9-C8	111.8 (5)
C10-C9-H9A	109.3
C8-C9-H9A	109.3
C10-C9-H9B	109.3
C8-C9-H9B	109.3
H9A-C9-H9B	107.9
C6-O1B-C7B	112.4 (12)
C8B-C7B-O1B	103.3 (16)
C8B-C7B-H7BA	111.1
N1-C1-C2-C3	0.2 (2)
C1-C2-C3-C4	0.7 (2)
C2-C3-C4-C5	-0.8 (2)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1$	0.0 (2)
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 6-\mathrm{O} 1-\mathrm{C} 7$	-171 (12)
S2-C6-O1-C7	3(2)
S1-C6-O1-C7	-177.8 (13)
C6-O1-C7-C8	159.6 (13)
O1-C7-C8-C9	59.6 (13)
C7-C8-C9-C10	-175.5 (10)
O1-C6-O1B-C7B	7(9)

C9B-C8B-H8BB	108.6
H8BA-C8B-H8BB	107.6
C8B-C9B-C10B	113.5 (9)
C8B-C9B-H9BA	108.9
C10B-C9B-H9BA	108.9
C8B-C9B-H9BB	108.9
C10B-C9B-H9BB	108.9
H9BA-C9B-H9BB	107.7
C9B-C10B-H10D	109.5
C9B-C10B-H10E	109.5
H10D-C10B-H10E	109.5
C9B-C10B-H10F	109.5
H10D-C10B-H10F	109.5
H10E-C10B-H10F	109.5
$\mathrm{N} 1{ }^{\text {i }}$-Mn1-N1	180.0
N1 ${ }^{\text {i }}$-Mn1-S1	89.15 (3)
N1-Mn1-S1	90.85 (3)
N1 ${ }^{\text {i }}$ - Mn1-S1 ${ }^{\text {i }}$	90.86 (3)
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{S} 1{ }^{\text {i }}$	89.15 (3)
$\mathrm{S} 1-\mathrm{Mn} 1-\mathrm{S} 1^{\mathrm{i}}$	180.0
$\mathrm{N} 1{ }^{\text {i }}$-Mn1-S2	89.85 (3)
N1-Mn1-S2	90.15 (3)
S1-Mn1-S2	69.478 (12)
S1 ${ }^{\text {i }}$-Mn1—S2	110.523 (12)
$\mathrm{N} 1{ }^{\text {i }}$-Mn1-S2 ${ }^{\text {i }}$	90.16 (3)
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{S} 2{ }^{\text {i }}$	89.84 (3)
S1-Mn1-S2 ${ }^{\text {i }}$	110.521 (12)
$\mathrm{S} 1{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{S} 2{ }^{\text {i }}$	69.477 (12)
$\mathrm{S} 2-\mathrm{Mn} 1-\mathrm{S} 2^{\mathrm{i}}$	180.0
C1-N1-C5	118.23 (11)
C1-N1-Mn1	120.78 (9)
C5-N1-Mn1	120.81 (8)
C6-S1-Mn1	84.58 (4)
C6-S2-Mn1	82.56 (4)
$\mathrm{S} 1{ }^{\mathrm{i}}$ - $\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 1$	-121.11 (9)
$\mathrm{S} 2-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 1$	128.36 (9)
$\mathrm{S} 2{ }^{\text {i }}-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 1$	-51.64 (9)
$\mathrm{S} 1-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 5$	-126.13 (9)
S1 ${ }^{\text {i }}$-Mn1-N1-C5	53.87 (9)
S2-Mn1-N1-C5	-56.65 (9)
S2 ${ }^{\text {i }}$ - $\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 5$	123.35 (9)
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{S} 1-\mathrm{Mn} 1$	178.4 (9)
O1B-C6-S1-Mn1	177.2 (12)
S2-C6-S1-Mn1	-1.95 (7)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Mn} 1-\mathrm{S} 1-\mathrm{C} 6$	-89.05 (5)

sup-6

supplementary materials

$\mathrm{S} 2-\mathrm{C} 6-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	$0(3)$
$\mathrm{S} 1-\mathrm{C} 6-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	$-178.7(15)$
$\mathrm{C} 6-\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}$	$-163.2(16)$
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}$	$-54.0(18)$
$\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}$	$-178.7(15)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$-0.99(19)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{Mn} 1$	$174.12(10)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$0.90(19)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1-\mathrm{Mn} 1$	$-174.21(10)$
$\mathrm{S} 1-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 1$	$58.88(9)$

$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{S} 1-\mathrm{C} 6$	$90.95(5)$
$\mathrm{S} 2-\mathrm{Mn} 1-\mathrm{S} 1-\mathrm{C} 6$	$1.11(4)$
$\mathrm{S} 2 \mathrm{i}-\mathrm{Mn} 1-\mathrm{S} 1-\mathrm{C} 6$	$-178.89(4)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{S} 2-\mathrm{Mn} 1$	$-178.5(9)$
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 6-\mathrm{S} 2-\mathrm{Mn} 1$	$-177.1(14)$
$\mathrm{S} 1-\mathrm{C} 6-\mathrm{S} 2-\mathrm{Mn} 1$	$1.91(7)$
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{S} 2-\mathrm{C} 6$	$88.03(5)$
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{S} 2-\mathrm{C} 6$	$-91.97(5)$
$\mathrm{S} 1-\mathrm{Mn} 1-\mathrm{S} 2-\mathrm{C} 6$	$-1.12(4)$
$\mathrm{S} 1 \mathrm{I}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{S} 2-\mathrm{C} 6$	$178.88(4)$

Symmetry codes: (i) $-x+1,-y+1,-z+2$.

supplementary materials

Fig. 1

Fig. 2

